人民长江

• 论文 • 上一篇    下一篇

基于量纲转换的SBFEM基础动刚度连分式求解改进

李建波,侯禹君,林皋   

  • 出版日期:2018-10-14 发布日期:2018-10-14

Research on improved model for continued fraction solution of SBFEM foundation dynamic stiffness based on dimensional transformation

LI Jianbo, HOU Yujun, LIN Gao   

  • Online:2018-10-14 Published:2018-10-14

摘要: 在求解无限域地基动刚度的比例边界有限元法中(SBFEM),以刚度矩阵与柔度矩阵构成的混合变量为基本模式的连分式方法,是近年来较为流行的方法。然而在真实场地参数条件下,连分式中的各阶刚度、柔度系数矩阵元素值间的数量级存在较大差别,使得无限域动刚度的计算结果存在数值不稳定等问题。针对以上问题,首先引入算例验证了采用改进连分式法计算结果的合理性;然后基于改进连分式法分析了参数无量纲程度对计算精度的影响,从而提出了基于量纲转换的SBFEM基础动刚度数值求解模型,即将场地真实参数转换为无量纲形式,基于转换后的参数计算动力刚度矩阵,随后将计算结果还原量纲。最后,通过参数敏感性分析以及对不同风化程度场地条件下无限域动刚度的比较,验证了采用上述方法计算结果的精度和工程适用性。

关键词: 结构-地基动力相互作用, 比例边界有限元法, 连分式法, 量纲分析, 数值稳定性

Abstract: In the scaled boundary finite element method (SBFEM) for solving the fundamental dynamic stiffness of an unbounded domain, the continued fraction solution that takes the mixing variables of the stiffness and flexibility matrices as the basic model is becoming popular increasingly. However, for the parameters of practical ground site, the enormous difference of the elements magnitudes of the stiffness matrix or flexibility matrix leads to the unstable solution of the dynamic stiffness of the unbounded domain. Aiming at the problem above, firstly, we verifies the rationality of the calculation result of a numerical example by improved continued fraction solution and then the influence of dimensionless degree of parameters on calculation accuracy is analyzed by the improved continued fraction, so the SBFEM dynamic stiffness numerical model is established based on dimensional transformation. In the new model, the real parameters of the site are converted to dimensionless form, with the converted parameters, the dynamic stiffness matrix is calculated and then the computational results are reduced to the real dimension. Finally, through the parameter sensitivity analysis and the dynamic stiffness analysis of the unbounded domain of different weathering degrees, numerical results are given to validate the accuracy and applicability of the presented model.

Key words: structure-ground dynamic interaction, scaled boundary finite element method, continued fraction, dimension analysis, numerical stability