人民长江 ›› 2021, Vol. 52 ›› Issue (1): 102-107.doi: 10.16232/j.cnki.1001-4179.2021.01.017

• • 上一篇    下一篇

基于时间序列和GRU的滑坡位移预测

鄢好, 陈骄锐, 李绍红, 吴礼舟   

  • 出版日期:2021-02-23 发布日期:2021-02-23

Predicting of landslide displacement based on time series and Gated Recurrent Unit

YAN Hao, CHEN Jiaorui, LI Shaohong, WU Lizhou   

  • Online:2021-02-23 Published:2021-02-23

摘要: 近些年随着深度学习的兴起,长短时间记忆网络(LSTM)常应用于滑坡位移的预测。GRU(Gated Recurrent Unit)是LSTM的一种改良,为此提出了一种联合时间序列和GRU神经网络来预测滑坡位移的方法。采用移动平均法将滑坡总位移曲线分解为趋势项位移和周期项位移,灰色Verhulst模型描述趋势项变化;考虑降雨和库水位等对滑坡位移的影响,应用Python语言搭建了一个3层GRU网络和全连接层(Dense)网络,以预测周期项变化,并用三峡库区八字门滑坡监测点ZG111位移监测数据对该方法进行了验证。结果表明:该方法相较于GRNN模型更能有效地利用历史信息,预测效果得到明显提高,可为滑坡预测提供重要的参考。

关键词: 滑坡位移预测; 时间序列; 灰色Verhulst模型; Gated Recurrent Unit; 八字门滑坡;

Abstract: In recent years,deep learning,long and short time memory networks(LSTM)are often used to monitor landslide displacement.Gated Recurrent Unit(GRU)is an improvement for LSTM.A new neural network model for predicting the landslide displacement was proposed based on time series theory and GRU in this paper.In this model,the moving average method was applied to decompose the cumulative displacement into the trend term and periodic term.The trend displacement was predicted by grey Verhulst model.Considering the influence of rainfall and reservoir water level on landslide displacement,a three-layer Gated Recurrent Unit network and Dense network using Python language were constructed to predict the periodic term.The displacement monitoring data of ZG111 in the Bazimen landslide was used to verify the effectiveness of this method.The results showed that the new method can consider historical information more effectively than GRNN,and the prediction effect was significantly improved,which can provide important reference for landslide prediction.

Key words: landslide displacement prediction; time series; grey Verhulst model; Gated Recurrent Unit; Bazimen landslide;