摘要: 基于历史数据的大坝安全监测预警、预报算法对数据集的质量要求较高,含有缺失值的数据集会明显降低算法结果的准确性。为提升数据质量,提出了一种融合多测点数据相关性的缺失值填补算法:基于各测点时间尺度的相关性,将满足一定相关度的时间序列作为预测模型的输入项,并引入迭代技术实现多测点的缺失值自动填补。为验证该算法对实际工程中不同类型缺失数据集的适用性,依据实测数据样本在缺失率、集中度、离散程度3个层次上共构造了12种不同类型的缺失数据集并进行试验。结果表明:针对不同类型的缺失数据集,该算法的RMSE均值在填补精度上较传统填补算法提升15%以上,nMAPE均值提升1%以上。