人民长江

• 论文 • 上一篇    下一篇

岩体结构面分组的改进数学方法研究

李绍红,吴礼舟,杨戒,王少阳,金文祥   

  • 出版日期:2017-11-14 发布日期:2017-11-14

Study on improved mathematical grouping method for structural planes of rock mass

LI Shaohong, WU Lizhou, YANG Jie, WANG Shaoyang, JIN Wenxiang   

  • Online:2017-11-14 Published:2017-11-14

摘要: 岩体结构面分组是岩体力学中的一项基础性工作。由于岩体结构面分组相对于一般聚类问题存在自身特殊之处,难以直接运用欧式距离度量结构面之间的相似度。通过对结构面数据做一定处理,使欧式距离可用于度量结构面之间的相似度,结合模糊C均值聚类(FCM—Fuzzy C-means Clustering)算法对岩体结构面分组进行研究;针对FCM初始聚类中心的确定,采用一种简洁高效的改进粒子群算法对其进行优选;再结合聚类有效性指标确定聚类分组数。通过模拟数据验证了该方法的合理性,并从多方面对分组数目进行讨论,给出了分组数目确定的一般方法。将提出的分组方法用于某水利工程坝基岩体结构面的分组研究,结果表明该方法易于实现、结论可靠,可为实际工程提供参考。

关键词: 岩体结构面分组, 模糊C均值聚类, 改进粒子群算法, 聚类有效性

Abstract: Rock mass structural plane grouping is a basic work in rock mechanics analysis. Compared with the general clustering analysis, the special characteristics of rock mass structural plane grouping make it hard to apply the Euclidean distance measuring the similarity of structural planes. In this paper, the Euclidean distance is used to measure the similarity degree between structural planes by simple mathematical treatment, and the grouping of rock mass is studied using the fuzzy c-means (FCM) clustering algorithm. An efficient modified particle swarm optimization algorithm is employed to optimize the determination of FCM initial cluster center. The validity index of cluster is used to obtain the optimal cluster number. This method is verified by simulated data, the number of grouping is discussed, and the general determination method of grouping number is given. Finally, the presented grouping method is applied to group the structural planes of rock mass of a dam foundation. The results show that the grouping method for rock mass structural planes is easy to perform, which can be used as a useful method for practical engineering.

Key words: rock mass structural plane grouping, fuzzy c-means clustering, particle swarm algorithm, cluster validity