人民长江

• 论文 • 上一篇    下一篇

中国流域降水数据的空间插值方法评估

陈雅婷,刘奥博   

  • 出版日期:2019-04-28 发布日期:2019-04-28

Optimal spatial interpolation method for precipitation data in China′s river basins

CHEN Yating, LIU Aobo   

  • Online:2019-04-28 Published:2019-04-28

摘要: 降水量的空间分布信息在水资源管理、旱涝灾害预测和可持续发展等研究领域具有重要价值。以中国1 915个气象站在1981~2010年间的平均降水量观测数据为基础,选取了反距离权重法(IDW)、径向基函数法(RBF)、全局多项式法(GPI)、局部多项式法(LPI)、普通克里金法(Ordinary Kriging)、简单克里金法(Simple Kriging)、泛克里金法(Universal Kriging)以及经验贝叶斯克里金法(EBK)8种空间内插方法进行评估。研究依据DEM数据的流域分析结果,对我国三大流域的降水量进行区域插值,同时采用交叉验证方法,对中国范围整体插值精度以及分区后三大流域的插值精度分别进行了验证。结果表明:对全国范围内采用经验贝叶斯克里金插值法取得了较好的效果;三大流域中,对黄河流域采用泛克里金法最优,对长江流域采用普通克里金法最优,珠江流域采用径向基函数法最优。最后以流域内的城市为例进行验证,结果表明各流域的最优空间插值方法具备有效性和指导价值。

关键词: 降水量, 空间插值, Kriging插值法, 长江流域, 黄河流域, 珠江流域, 中国

Abstract: The spatial distribution information of precipitation is of great value in the fields of water resource management, drought and flood disaster prediction and sustainable development. Based on precipitation data (1981~2010) and DEM data of 1915 meteorological stations in China, we produce a nice spatial distribution of precipitation of China by using eight interpolation methods, including Inverse Distance Weight method, Radial Basis Function method, Global Polynomial Interpolation method, Local Polynomial Interpolation method, Ordinary Kriging method, Simple Kriging method, Universal Kriging method and Empirical Bayesian Kriging method. By using cross-validation, we find that the Empirical Bayesian Kriging method is optimal for the whole China, and the optimal methods for Yellow River basin, Yangtze River basin and Pearl River basin are Universal Kriging method, Ordinary Kriging method, Radial Basis Function method, respectively. Through verification for cities, it′s proved that the optimal spatial interpolation methods for basins are valid and instructive.

Key words: precipitation, spatial interpolation, Simple Kriging method, Yellow River basin, Yangtze River basin, Pearl River basin;China