人民长江

所属专题: 长江委成立70周年专辑

• 论文 • 上一篇    下一篇

基于CEEMD-RF模型的渣土边坡地下水埋深预测

付智勇,陈文强,唐伟雄,龙晶晶,曾江波   

  • 出版日期:2020-01-28 发布日期:2020-01-28

Prediction of groundwater depth in residue slope with CEEMD-RF model based on phase space reconstruction

FU Zhiyong, CHEN Wenqiang, TANG Weixiong, LONG Jingjing, ZENG Jiangbo   

  • Online:2020-01-28 Published:2020-01-28

摘要: 地下水是影响渣土边坡稳定性的关键因素之一,地下水埋深预测对分析渣土边坡稳定性具有重要意义。考虑渣土边坡地下水水位的高度非平稳和非线性特点,提出了一种基于相空间重构的互补集合经验模态分解-随机森林(CEEMD-RF)的地下水埋深预测模型。以广州市某渣土边坡SW2水文观测孔为例,将基于相空间重构的CEEMD-RF模型应用于该渣土边坡的地下水埋深预测,并与相空间重构的RF模型预测结果进行对比分析。结果表明:利用CEEMD-RF模型对地下水埋深预测的拟合优度为0.997,均方根误差为0.03 m,优于相空间重构的RF模型预测结果;基于相空间重构的CEEMD-RF模型预测的地下水埋深序列能很好地反映地下水埋深的尖变点。

关键词: 地下水埋深预测, 渣土边坡, 相空间重构, CEEMD-RF

Abstract: Groundwater is one of the key factor affecting the stability of residue slope, and the prediction of groundwater depth in residue slope plays a significance role in analyzing the slope stability. A prediction model of groundwater depth, namely complementary ensemble empirical mode decomposition-random forest (CEEMD-RF) model based on phase space reconstruction, is proposed considering the highly non-stationary and nonlinear characteristics of groundwater level in residue slope. The CEEMD-RF model is applied to the groundwater depth prediction of SW2 hydrological observation hole of a residue slope in Guangzhou and the prediction results are compared and analyzed with that calculated by phase space reconstruction-RF model. The result shows that the fitting goodness of the groundwater depth predicted by CEEMD-RF model is 0.997, the root mean square error (RMSE) is 0.03 m, which is better than those using phase space reconstruction-RF model. The predicted groundwater depth series based on the CEEMD-RF model reflects the sharp point very well.

Key words: prediction of groundwater depth, residue slope, phase space reconstruction, complementary ensemble empirical mode decomposition-random forest (CEEMD-RF)