人民长江 ›› 2022, Vol. 53 ›› Issue (9): 155-162.doi: 10.16232/j.cnki.1001-4179.2022.09.024

• • 上一篇    下一篇

土质边坡位移概率反分析与失稳概率预测

姜广伦;孔存芝;南骁聪;王升   

  • 发布日期:2022-10-20

Displacement probability back analysis and instability probability prediction of soil slopes

JIANG Guanglun1,KONG Cunzhi2,NAN Xiaocong3,4,WANG Sheng5   

  • Published:2022-10-20

摘要: 传统边坡位移反分析常采用确定性方法,忽略了参数的非唯一性,相比之下概率反分析方法通过量化输入参数的不确定性来确定多组输入参数,这对于边坡失稳概率的预测具有重要意义。通过先验分布量化输入参数的不确定性,同时构建针对原边坡数值模型的高效率代理模型,采用贝叶斯推断并结合马尔科夫链蒙特卡罗方法对输入参数进行更新,极大降低了输入参数的不确定性。通过对一实例边坡位移进行预测,并与实际监测位移进行对比,验证了此方法的可靠性与准确性。最后通过构建高效的主动学习代理模型预测了边坡的失稳概率,预测结果可为边坡失稳的定量风险评估提供重要支撑。

关键词: 土质边坡;位移预测;失稳概率;概率反分析;代理模型;

Abstract: The traditional back analysis of slope displacement adopts the deterministic method, which ignores the non-uniqueness of parameters. In contrast, the probabilistic back analysis method can determine multiple sets of input parameters by quantifying the uncertainty of input parameters, which is of great significance for prediction of slope instability probability. In this paper, the uncertainties of input parameters were quantified by prior distribution, and then a high efficient surrogate model for the original slope numerical model was constructed. The input parameters were updated by Bayesian inference and Markov chain-Monte Carlo method, which greatly reduced the uncertainty of the input parameters. Then, by predicting the displacement of a slope and comparing with the actual monitoring displacement, the reliability and accuracy of the proposed method were verified. Finally, the slope instability probability was predicted by constructing an efficient active learning agent model. The prediction results can provide important support for quantitative risk assessment of slope’s instability.

Key words: soil slope; probabilistic back analysis; agent model; displacement prediction; instability probability