人民长江 ›› 2023, Vol. 54 ›› Issue (9): 264-271.doi: 10.16232/j.cnki.1001-4179.2023.09.035

• • 上一篇    

基于改进YOLOv4-Tiny的河湖船舶目标检测算法

许小华 陈豹 王海菁 包学才   

  • 收稿日期:2022-11-18 出版日期:2023-09-28 发布日期:2023-10-16

Object detection algorithm for ships on rivers and lakes based on improved YOLOv4-Tiny

XU Xiaohua CHEN Bao WANG Haijing BAO Xuecai   

  • Received:2022-11-18 Online:2023-09-28 Published:2023-10-16

摘要: 为有效提升复杂河湖环境下河湖过往船舶的精准快速识别效果,提出了基于改进YOLOv4-Tiny的河湖船舶目标检测算法。该算法首先通过引入Sigmoid加权线性单元(SiLU)激活函数,构建卷积+批标准化+SiLU激活函数的卷积模块,并替换主干网络中原有模块,然后在主干网络之后增加改进的空间金字塔池化(SPP)网络,最后在特征金字塔网络(FPN)中引入卷积块注意力模块(CBAM),同时采用自上而下的连接,构建改进的路径聚合网络(PANet)。实验结果表明:在昏暗、模糊、强光、遮挡重叠等复杂环境下,提出的改进YOLOv4-Tiny目标检测算法的平均精度比原始算法提升了1.27%,检测(推理)速度达到81.55帧/s,且仅占用内存37.34 MB。研究成果可为河湖过往船舶智能管理提供参考。

关键词: 船舶识别;目标检测;深度学习;卷积神经网络;YOLOv4-Tiny;

Abstract: In order to effectively improve the accurate and rapid detection of ships on rivers and lakes in complex river-lake environment, an object detection algorithm for ships on rivers and lakes based on improved YOLOv4-Tiny was proposed.The algorithm first activated the function by introducing a Sigmoid Weighted Linear Unit(SiLU),then the Convolution+Batch Normalization+SiLU(CBS)was constructed and replaced the original module(Conv+BN+Leak_relu)in the backbone network.Then, an improved Spatial Pyramid Pooling(SPP)network was added after the backbone network.Finally, a Convolution Block Attention Module(CBAM)was introduced into the Feature Pyramid Network(FPN),and a top-down connection was adopted, an improved Path Aggregation Network(PANet)was built.The experimental results showed that the average accuracy of the improved YOLOv4-Tiny target detection algorithm was 1.27% higher than that of the original algorithm in the complex environment of darkness, blur, strong light and shelter overlap.The detection speed reached to 81.55 FPS,and the occupied memory was only 37.34 MB.The research results can provide a reference for the intelligent management of ships passing through rivers and lakes.

Key words: ships detection; object detection; deep learning; convolutional neural network; YOLOv4-Tiny;