人民长江 ›› 2023, Vol. 54 ›› Issue (10): 30-34.doi: 10.16232/j.cnki.1001-4179.2023.10.005

• • 上一篇    

基于Sentinel-2的川西高原植被叶片含水量反演

谢兵 杨武年 杨鑫 王芳   

  • 收稿日期:2023-02-24 出版日期:2023-10-28 发布日期:2023-10-26

Quantitative inversion of water content in vegetation leaves in western Sichuan Plateau based on Sentinel-2 satellite image

XIE Bing YANG Wunian YANG Xin WANG Fang   

  • Received:2023-02-24 Online:2023-10-28 Published:2023-10-26

摘要: 植被叶片含水量多少不仅影响着植被本身的生长情况,还是该地区水源涵养的重要因子,特别是在川西高原地区,应用遥感技术大范围估算植被叶片含水量对于该地区生态环境保护、水环境循环有着重要的作用。基于Sentinel-2卫星影像数据,选取FVC、NDVI、NDVI705、NDWI1、NDWI2、TVI共6种植被指数,结合野外实测叶片含水量,建立植被叶片含水量与植被指数之间的关系模型,包括多元逐步回归模型、随机森林模型和BP神经网络模型,并对反演过程及结果进行了十折交叉验证,最终采用最优模型(BP神经网络)得到川西高原松潘县试验区植被叶片含水量分布情况。研究结果表明:BP神经网络模型均方根误差最小,平均绝对百分比最小,模型精度最高,可以有效反演植被叶片含水量。

关键词: 叶片含水量;植被指数;BP神经网络;Sentinel-2卫星影像;川西高原;

Abstract: Leaf water content of vegetation not only affects the growth of vegetation itself, but also is an important factor of water conservation in this area.Especially in the western Sichuan Plateau, the application of remote sensing technology to estimate the water content of vegetation leaves has an important role in the ecological environment and water environment of this area.Based on Sentinel-2 satellite image data, six vegetation indexes(FVC、NDVI、NDVI705、NDWI1、NDWI2、TVI) are adopted in this study.Combined with field measured equivalent water thickness of leaves, we build a multiple stepwise regression model, random forest model and BP neural network model, and the inversion process and results are cross-verified by ten folds.The optimal model is used to obtain the water content distribution of vegetation leaves in the Songpan County test area of the western Sichuan Plateau.The results show that the root mean square error(RMSE) and the Mean Absolute Percentage Error(MAPE) of the BP neural network model is the smallest, and the model accuracy is the highest.The model can effectively invert the water content of vegetation leaves.

Key words: leaf water content; vegetation index; BP neural network; Sentinel-2 satellite image; western Sichuan Plateau;