人民长江 ›› 2023, Vol. 54 ›› Issue (10): 243-250.doi: 10.16232/j.cnki.1001-4179.2023.10.035

• • 上一篇    

基于深度学习的隧道掌子面节理智能检测与分割

彭磊 周春 胡锋 田晓阳 王海波   

  • 收稿日期:2023-03-20 出版日期:2023-10-28 发布日期:2023-10-26

Intelligent detection and segmentation of tunnel face joints based on deep learning

PENG Lei ZHOU Chun HU Feng TIAN Xiaoyang WANG Haibo   

  • Received:2023-03-20 Online:2023-10-28 Published:2023-10-26

摘要: 现有隧道掌子面节理检测方法主要以人工掌子面素描为主,存在检测效率低、主观性较强等问题,为此提出了一种基于Mask R-CNN的隧道掌子面节理图像智能识别分割算法。该算法可直接用于检测隧道掌子面图片中的节理目标并自动分割,提升了检测效率,使检测结果更加客观。此外,为解决现有图像处理方法检测准确率较低的问题,尤其是对阴暗隧道环境下复杂隧道掌子面的检测,引入了路径聚合网络(PANet)以改进Mask R-CNN对特征信息的融合能力,从而提升智能检测方法的准确率。随后对800张隧道掌子面图像开展了训练与结果评估,测试结果表明:所提出的算法能够快速检测出隧道掌子面图片中的节理位置,并对属于节理像素的区域赋予掩码,实现节理分割。在80张测试集图片中的检测框与分割平均准确率均值(mAP)分别为58.0%,49.2%,相较于原Mask R-CNN算法及其他智能识别分割算法表现更加优越。

关键词: 隧道;掌子面节理;深度学习;神经网络;实例分割;模型试验;

Abstract: The current methods for detecting joints on tunnel face rely primarily on manual sketches, which has defects of low detection efficiency and subjectivity.To address these concerns, this paper presents an intelligent recognition and segmentation algorithm based on Mask R-CNN(Mask Region-based Convolutional Neural Network) for detecting joint targets on tunnel face images and automatically segmenting them, thereby improving detection efficiency and objectivity of the results.Additionally, to tackle the challenge of low detection accuracy in existing image processing methods, particularly for complex tunnel joint surfaces in dark environments, the paper introduces a Path Aggregation Network(PANet) to enhance the fusion capability of feature information in Mask R-CNN,thereby improving the accuracy of the intelligent detection method.The algorithm was trained on a dataset of 800 tunnel face images, and the research findings demonstrate that it can quickly detect the position of joints on tunnel face images and assign mask off code to the joint pixel regions to achieve joint segmentation.The mean average precision(mAP) of the detection boxes and segmentation in the 80 test set images were 58.0% and 49.2%,respectively, which outperforms the original Mask R-CNN algorithm and other intelligent recognition and segmentation algorithms.

Key words: tunnel; tunnel face joints; deep learning; neural network; instance segmentation; model test;