人民长江 ›› 2025, Vol. 56 ›› Issue (4): 49-55.doi: 10.16232/j.cnki.1001-4179.2025.04.007

• • 上一篇    

基于 AI 深度学习的向家坝 — 三峡区间流域洪水预报

崔震,郭生练,向鑫,李承龙,张俊,王乐   

  • 收稿日期:2024-07-22 出版日期:2025-04-28 发布日期:2025-04-28

Flood simulation and forecasting for Xiangjiaba - Three Gorges Reservoir interval basin based on AI deep learning model

CUI Zhen,GUO Shenglan,XIANG Xin,LI Chenglong,ZHANG Jun,WANG Le   

  • Received:2024-07-22 Online:2025-04-28 Published:2025-04-28

摘要: 为提高长江上游向家坝水库至三峡水库区间流域洪水预报精度,探索人工智能(AI)深度学习模型的可解释性途径,将特征 - 时间双重注意力(DA)和递归编码 - 解码过程(RED)耦合至长短期记忆(LSTM)神经网络,构建了 DA-LSTM-RED 模型;开展了向家坝水库至三峡水库区间流域 1~7d 预见期的洪水模拟预报,并与 LSTM-RED 模型进行对比研究。结果表明:两个 AI 深度学习模型在训练期和检验期都取得了较好的模拟预报精度;DA-LSTM-RED 模型的优势随着预见期的增加逐渐明显,7d 预见期的纳什效率系数和径流总量相对误差分别为 0.94 和 - 0.48%。DA-LSTM-RED 模型能识别出与目标输出相关性较高的输入变量,不仅改善了模型的模拟预报性能,还提高了深度学习的可解释性,可为洪水模拟预报提供一种新的技术途径

关键词: 洪水预报;注意力机制;神经网络;深度学习模型;可解释性;向家坝水库;三峡水库;长江流域

Abstract: For improving accuracy of flood forecasting in the Xiangjiaba - Three Gorges Reservoir interval basin and exploring the interpretability of artificial intelligence (AI) deep learning approach, we coupled the feature - temporal dual attention mechanism (DA) and the recursive encoding - decoding process (RED) into the long short - term memory (LSTM) neural network, and constructed a DA - LSTM - RED model. Flood forecasting with 1~7d forecast periods in the Xiangjiaba to Three Gorges Reservoir interval basin was conducted and compared with the LSTM - RED model. The results show that two AI deep learning models have high forecasting accuracy in training and verification periods; the performance of DA - LSTM - RED model is better than LSTM - RED model as the forecast periods prolong, and the Nash efficient coefficient and relative error in 7d forecast periods during validation period are 0.94 and -0.48%, respectively. The proposed DA - LSTM - RED model can identify input variables with high correlation to the target output, which not only enhances the model forecasting ability but also improves the interpretability of the machine deep learning model to a certain extent. This offers a new technical approach for flood simulation and forecasting.

Key words: flood forecasting; attention mechanism; neural network; deep learning model; interpretability; Xiangjiaba Reservoir; Three Gorges Reservoir; Changjiang River Basin