人民长江 ›› 2025, Vol. 56 ›› Issue (4): 56-64.doi: 10.16232/j.cnki.1001-4179.2025.04.008

• • 上一篇    

基于机器学习的堰塞坝溃决峰值流量预测模型

朱祖龙,陈华勇,袁仔洋,李霄,王涛   

  • 收稿日期:2024-07-22 出版日期:2025-04-28 发布日期:2025-04-28

Prediction models for peak discharge caused by barrier dam failures based on machine learning

ZHU Zulong,CHEN Huayong,YUAN Ziyang,LI Xiao,WANG Tao   

  • Received:2024-07-22 Online:2025-04-28 Published:2025-04-28

摘要: 堰塞坝溃决洪水会给下游人民生命财产安全造成严重威胁,精准预测溃口峰值流量对于灾害响应工作至关重要。利用 55 例历史堰塞坝溃决案例数据,包括坝高、坝前储水量和坝体材料类别,构建了用于溃口峰值流量预测的支持向量机模型(SVM)和随机森林模型(RF),通过与实测值、经验公式预测值对比,用决定系数(R2)和均方根误差(RMSE)定量评估了各种机器学习模型的预测效果。结果表明:机器学习模型能准确预测堰塞坝溃口峰值流量,但 SVM 模型(R2=0.900,RMSE=0.465)性能要略优于 RF 模型(R2=0.857,RMSE=0.556),且两者预测精度均优于既有经验公式,其中 SVM 模型相比于最佳经验公式,R2提升了 8.7%,RMSE 降低了 23.6%。研究成果可为堰塞坝溃决灾害的应急抢险提供参考

关键词: 堰塞坝;溃口峰值流量;支持向量机;随机森林;机器学习

Abstract: The outburst flood from a barrier dam poses serious threats to lives, properties and assets downstream. Accurate prediction of the breach peak discharge is crucial for disaster response. Therefore, this study utilizes data from 55 historical landslide dam breach cases, including dam height (Hd​), reservoir storage capacity (Vw​), and dam material type, to construct a Support Vector Machine (SVM) model and a Random Forest (RF) model for predicting breach peak discharge. By comparing the model outputs with measured values and empirical formula estimates, the predictive performances of the machine learning models were quantitatively evaluated using two statistical metrics: the coefficient of determination (R2) and root mean square error (RMSE). The results indicated that both of the two machine learning models developed in this study can accurately predict the breach peak discharge of landslide dams. However, the SVM model (R2=0.900, RMSE=0.465) slightly outperforms the RF model (R2=0.857, RMSE=0.556). However, two machine learning models demonstrate higher prediction accuracy than existing empirical formulas. Specifically, compared to the best-performing empirical formula, the SVM model improves R2 by 8.7% and reduces RMSE by 23.6%. The findings of this study can provide valuable references for emergency response to barrier dam breach disasters.

Key words: barrier dam; breach peak discharge; Support Vector Machine (SVM); Random Forest (RF); machine learning