人民长江 ›› 2025, Vol. 56 ›› Issue (4): 128-135.doi: 10.16232/j.cnki.1001-4179.2025.04.017

• • 上一篇    

基于 CEEMDAN-IASO-TCN 组合模型的中长期径流预报

徐军杨,罗远林,刘月馨,陈冬强,张坚,张楚   

  • 收稿日期:2024-05-20 出版日期:2025-04-28 发布日期:2025-04-28

Medium and long-term runoff forecasting based on CEEMDAN-IASO-TCN combined model

XU Junyang,LUO Yuanlin,LIU Yuexin,CHEN Dongqiang,ZHANG Jian,ZHANG Chu   

  • Received:2024-05-20 Online:2025-04-28 Published:2025-04-28

摘要: 准确预测月径流对流域水资源管理至关重要。为了增强中长期径流预测的准确性,提出了结合自适应噪声完备集合经验模态分解(CEEMDAN)、改进原子搜索算法(IASO)和时间卷积网络(TCN)的 CEEMDAN-IASO-TCN 组合模型。该模型首先使用 CEEMDAN 对月径流序列进行分解,然后利用 IASO 对 TCN 模型的批量大小、学习率、丢弃因子进行寻优,得到最优的时间卷积网络结构并利用最优的 IASO-TCN 对分量进行预测,最后重构分量预测结果得到最终月径流预测结果;以岷江流城镇江关水文站 1957 - 2019 年的月径流数据为研究对象,将所提模型与其他模型进行对比。研究结果表明:CEEMDAN-IASO-TCN 模型具有较高的预测精度,训练和测试阶段的纳什系数分别达到 0.9191 和 0.8691。研究成果可为水资源可持续利用提供可靠依据

关键词: 中长期径流预报;自适应噪声完备集合经验模态分解;原子搜索算法;时间卷积网络;岷江流城

Abstract: Accurate prediction of monthly runoff is crucial for water resource management in a watershed. In order to enhance the accuracy of medium and long - term runoff prediction, CEEMDAN - IASO - TCN combined model is proposed, which is constructed by combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), improved atomic search algorithm (IASO), and temporal convolutional network (TCN). The model firstly uses CEEMDAN to decompose the monthly runoff sequence, and then uses IASO to optimise the batch size, learning rate, and discard factor of the TCN model to obtain the optimal time convolution network structure and predict the components using the optimal ASO - TCN, and finally reconstructs the component prediction results to obtain the final monthly runoff prediction results. The monthly runoff data from 1957 to 2019 at Zhenjiangguan Hydrological Station in Minjiang River Basin are taken as the study object, and the proposed model is compared with other models. The results show that the CEEMDAN - IASO - TCN model has the highest prediction accuracy, with Nash coefficients of 0.9191 and 0.8691 in the training and testing stages, respectively. The research results can provide a reliable basis for the sustainable use of water resources.

Key words: medium and long - term runoff forecasting; complete ensemble empirical mode decomposition with adaptive noise; atomic search algorithm; temporal convolutional network; Minjiang River Basin