人民长江 ›› 2020, Vol. 51 ›› Issue (10): 94-99.doi: 10.16232/j.cnki.1001-4179.2020.10.016
刘青松, 严华, 卢文龙
LIU Qingsong, YAN Hua, LU Wenlong
摘要: 影响河流水位的因素众多,鉴于传统的单变量水文预测模型无法充分考虑众多因素,提出了一种基于AR-RNN的多变量水位预测模型。模型包含循环神经网络(RNN)与自回归模型(AR)两个部分。RNN部分为模型引入了大量的非线性层,帮助模型拟合水文序列中的非线性成分。但是大量的非线性层降低了模型对于线性成分的敏感性,AR部分可以提高模型对于线性成分的敏感性,使得模型在水位峰值处的预测更加准确。将AR-RNN模型应用于四川省清溪河流域的水位预测中,结果表明:相对于ARIMA模型、SVR模型和BP神经网络,AR-RNN模型的预测精度更高。