人民长江 ›› 2024, Vol. 55 ›› Issue (9): 85-92.doi: 10.16232/j.cnki.1001-4179.2024.09.012

• • 上一篇    

基于 PIE-Engine Studio 的西藏典型湖泊总悬浮物反演

赵爽,柳锦宝,耿蔚,陶星宇,汪菀蔚   

  • 收稿日期:2024-02-20 出版日期:2024-09-28 发布日期:2024-09-28

ZHAO Shuang, LIU Jinbao, GENG Wei, TAO Xingyu, WANG Wanwei   

  • Received:2024-02-20 Online:2024-09-28 Published:2024-09-28

摘要: 总悬浮物浓度是水环境评价的重要参数之一 ,并且能在各个方面影响水体其他参数 。青藏高原湖泊 环 境正处于大幅变化的时期 , 而其分布与动态变化与湖泊的环境息息相关 。基于西藏典型湖泊 29 个 采 样 点 水 质实测数据和 Landsat 8 Collection 2 遥感数据 ,使用 PIE- Engine Studio 平 台 , 对 比 分 析 了 基 于 单 波 段 和 多波 段组合的多种总悬浮物浓度反演模型 ,选出了最优的总悬浮物浓度反演模型 ,并运用该模型分析了色林错 、扎 日 南木错以及塔若错总悬浮物 2013 ~ 2023 年月度 时 空 变 化 特 征 。分 析 结 果 表 明:① 总 悬 浮 物 对 绿 光 、红 光 波段最为敏感 , 以波段反射率组合(B3 + B4) 、(B2/B3)( B2 为蓝光波段 ,B3 为绿光波段 ,B4 为红光波段)为 自变量 , 总悬浮物浓度为因变量的三波段模型为西藏典型湖泊总悬浮物浓度遥感反演最佳模型 ;② 总悬浮物浓 度年内变化总体存在季节规律 ,夏季浓度高 , 而春秋季低 。在色林错 , 浓度在北部较高 , 高值夏季主要 分 布 在 西北岸 , 而秋冬季则在东北岸 , 受风向影响较大;在扎 日 南木错的西部较高 ;在塔若错 ,夏季在南部较高 。3 个 湖泊均在 11 月 时出现东部浓度重新升高的现象 。③ 年 降 水 量 与 各 湖 泊的 悬 浮 物 浓 度 相 关 性 较 高 。年 际 变 化中 ,2013 ~ 2023 年 , 悬浮物浓度的年均值先是逐年升高 ,在 2018 年后随着年降水量的减少而逐渐下降或稳 定 。另外 , 色林错 、扎 日 南木错 、塔若错湖面面积分别增长了 2 . 87% ( 约 68 . 14 km2 ) 、3 . 01% ( 约 30 . 31 km2 ) 、 1 . 01% ( 约 4 . 87 km2 ) , 色林错持续扩张 ,扎 日 南木错和塔若错先快速扩张 , 而后萎缩 , 湖面面积与悬浮物浓度 均值表现较同步 ,均是受降水量和径流的影响 。研究结果可为高原湖泊水质评价提供理论依据 ,为水土流失 、 水资源保护提供科学参考 。

关键词: 总悬浮物 ; PIE-Engine Studio ; 遥感反演 ; 云计算 ; 高原湖泊 ; 西藏

Abstract: The concentration of total suspended matter (TSM) is one of the key parameters for water environment assessment and can significantly influence other parameters of the water body in various aspects. The lakes on the Qinghai - Tibet Plateau are currently undergoing significant environmental changes ,and the distribution and dynamic variation of TSM concentration are close- ly related to the environmental conditions of these lakes. Based on the in - situ water quality data from 29 sampling points in typi- cal lakes in Tibet and Landsat 8 Collection 2 remote sensing data ,a comparative analysis was conducted using the PIE- Engine Studio remote sensing cloud computing platform to evaluate various TSM concentration retrieval models that based on single - band and multi - band combinations. The optimal TSM concentration retrieval model was selected and subsequently used to analyze the spatiotemporal variations of TSM in Siling Co ,zhari Namco ,and Taro Co from 2013 to 2023 . The results indicated that:① TSM was most sensitive to the green and red light bands. Athree - band model using band reflectance combinations ( B3 +B4) , ( B2/ B3) (where B2 represented the blue band ,B3 represented the green band ,and B4 represented the red band) as independent var- iables and TSM concentration as the dependent variable ,was the optimal model for remote sensing retrieval of TSM concentration in typical lakes of Tibet. ② The annual variation in TSM concentration generally followed a seasonal pattern ,with higher concen- trations in summer and lower concentrations in spring and autumn. In Siling Co ,the concentration was higher in the northern re- gion ,with high values mainly distributed along the northwest shore in summer and shifting to the northeast shore in autumn and winter ,significantly influenced by wind direction. In zhari Namco ,higher concentrations were observed in the western part ,while in Taro Co ,the southern region showed higher concentrations during summer. All three lakes exhibited a phenomenon that the TSM concentrations rose again in the eastern regions in November. ③ There was a high correlation between annual precipitation and TSM concentration in these lakes. From 2013 to 2023 ,the annual average TSM concentration initially increased year by year but began to gradually decrease or stabilize after 2018 as the annual precipitation decreased. Additionally ,the surface areas of Siling Co ,zhari Namco ,and Taro Co expanded by 2 . 87% ( approximately 68 . 14 km2 ) , 3 . 01% ( approximately 30 . 31 km2 ) , and 1 . 01% (approximately 4 . 87 km2 ) ,respectively . Siling Co continued to expand ,while zhari Namco and Taro Co initially expand- ed rapidly and then contracted. The changes in lake surface area were closely synchronized with the average TSM concentration , influenced by precipitation and runoff. The findings can provide a theoretical basis for assessing water quality in plateau lakes and offer scientific guidance for soil erosion control and water resource protection.

Key words: total suspended matter ; PIE-Engine Studio ; remote sensing inversion ; cloud computing ; plateau lakes ; Tibet