人民长江 ›› 2025, Vol. 56 ›› Issue (5): 14-22.doi: 10.16232/j.cnki.1001-4179.2025.05.003

• • 上一篇    

极端暴雨条件下城市内涝模拟研究进展与展望

周添红,唐佐槐,褚俊英,周祖吴,李孟泽,唐明   

  • 收稿日期:2024-08-20 出版日期:2025-05-28 发布日期:2025-05-28

Research progress and prospect of urban waterlogging simulation under extreme rainstorm conditions

ZHOU Tianhong,TANG Zuohuai,CHU Junying,ZHOU Zuwu,LI Mengze,TANG Ming   

  • Received:2024-08-20 Online:2025-05-28 Published:2025-05-28

摘要: 在全球气候变化和城市化的背景下,极端暴雨事件频发,城市内涝问题日益严峻,威胁城市安全。为减轻内涝威胁和提高极端暴雨事件的应急管理水平,借助模拟手段分析极端暴雨条件下城市内涝过程已成为重要研究趋势。在极端暴雨基本特征分析的基础上,识别了城市内涝积水的主要影响因素;系统总结了极端暴雨条件下城市内涝模拟的两大主流方法,即机理驱动模型和数据驱动模型,前者物理过程明确,但计算用时长,后者计算效率满足快速模拟预测的要求,但缺乏物理机理。在此基础上,从城市内涝模拟结果的多指标动态分析、模拟精度和效率的提升、城市尺度模型与流域尺度模型的深度融合、机理模型和数值天气预报的动态结合、机理驱动模拟和数据驱动模拟的实时耦合 5 个方面展望了极端暴雨条件下城市内涝模拟的未来发展趋势。研究成果可为极端暴雨条件下城市内涝过程识别与管理提供借鉴

关键词: 极端暴雨;城市内涝模拟;数据驱动模型;机理驱动模型

Abstract: Against the background of global climate change and urbanization, extreme rainstorm events are frequent, and urban waterlogging has become increasingly severe, threatening urban safety. In order to reduce the threat of waterlogging and improve the emergency management level of extreme rainstorm events, it has become an important research trend to analyze the urban waterlogging process under extreme rainstorm conditions with the help of simulation methods. Based on the analysis of the basic characteristics of extreme rainstorms, the main influencing factors of urban waterlogging accumulation were identified. The two main simulation methods of urban waterlogging under extreme rainstorms were systematically summarized, i.e., mechanism-driven models and data-driven models. The former has clear physical processes but long calculation time, while the latter meets the requirements of fast simulation prediction but lacks physical mechanism. On this basis, the future development trends of urban waterlogging simulation under extreme rainstorm conditions were prospected from five aspects: multi-index dynamic analysis of simulation results, improvement of simulation accuracy and efficiency, deep integration of urban-scale and basin-scale models, dynamic combination of mechanism models and numerical weather forecasts, and real-time coupling of mechanism-driven and data-driven simulations. The research results can provide a reference for the identification and management of urban waterlogging processes under extreme rainstorm conditions.

Key words: extreme rainstorm; urban waterlogging simulation; data-driven model; mechanism-driven model