摘要: 为实现滑坡变形的高精度预测,进而达到滑坡稳定性判断的目的,首先采用BP神经网络、支持向量机及GM(1,1)模型对滑坡变形进行传统的单项预测,且为提高单项预测精度,再采用遗传算法、粒子群算法及半参数法对各单项预测模型进行优化;其次基于多种组合指标,采用累加法和累乘法确定综合组合权值,实现对滑坡变形的组合优化预测。结果表明:组合预测结果的精度及稳定性均高于单项预测,而在综合权值的确定过程中,累乘法要优于累加法,且最优组合预测结果的相对误差平均值和标准差分别为0.81%和0.62%,具有较高的预测精度及稳定性,验证了预测思路对滑坡变形预测具有较好的适用性和有效性。