人民长江
• 论文 • 上一篇 下一篇
陈亮青,邹宗兴,苑谊,王艳昆
出版日期:
发布日期:
CHEN Liangqing,ZOU Zongxing,Yuan Yi,WANG Yankun
Online:
Published:
摘要: 针对诱发因素对于滑坡位移变形的滞后影响,采用平均影响值法(MIV)对不同滞后期诱发因素进行筛选,然后结合广义回归神经网络(GRNN)建立了MIV-GRNN滑坡位移混合预测模型。以三峡库区具有代表性的树坪滑坡为例,将滑坡位移时间序列分解为趋势项和周期项,运用多项式和MIV-GRNN模型分别预测趋势项和周期项位移。分析结果表明:MIV-GRNN模型可以较好地反映诱发因素对滑坡位移滞后性的影响,与传统预测模型相比最大相对误差减少了11.2%。
关键词: 位移预测, 滞后性, 诱发因素, 树坪滑坡, 三峡库区
Abstract: In view of the lag effect of inducing factors on displacement and deformation of landslides, the Mean Impact Value (MIV) method is used to screen the inducing factors for different lag phases, and then the hybrid MIV-GRNN model is set to predict the landslide displacement combined with the Generalized Regression Neural Network (GRNN). Taking Shuping Landslide in Three Gorges Reservoir area as an example, the time series of landslide displacement is decomposed into trend term and periodic term, and the polynomial and MIV-GRNN models are used to predict the trend term and periodic term displacement respectively. The results show that MIV-GRNN model can well reflect the lag influences of inducing factors on landslide displacement. Compared with the traditional prediction model, the maximum relative error is reduced by 11.2%.
Key words: displacement prediction, lag effect, inducing factor, Shuping Landslide, Three Gorges Reservoir area
陈亮青,邹宗兴,苑谊,王艳昆. 考虑诱发因素影响滞后性的库岸滑坡位移预测[J]. 人民长江, doi: 10.16232/j.cnki.1001-4179.2018.10.012.
CHEN Liangqing,ZOU Zongxing,Yuan Yi,WANG Yankun. Displacement prediction of reservoir landslide considering lag effect of inducing factors[J]. , doi: 10.16232/j.cnki.1001-4179.2018.10.012.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.rmcjzz.com/CN/10.16232/j.cnki.1001-4179.2018.10.012
http://www.rmcjzz.com/CN/Y2018/V49/I10/60