人民长江 ›› 2022, Vol. 53 ›› Issue (3): 196-201.doi: 10.16232/j.cnki.1001-4179.2022.03.031

• • 上一篇    下一篇

基于聚类改进的河流水体遥感图像处理算法

屈艳红   

  • 发布日期:2022-04-25

Algorithm for remote sensing image processing of river water bodies based on improved clustering

QU Yanhong   

  • Published:2022-04-25

摘要: 采用合适的图像分割技术及数据模型,是准确解译卫星遥感河流影像的关键环节。针对当前存在的技术问题,从提高遥感河流图像分割的准确性与抗噪性出发,提出了一种基于烟花优化K-Means聚类与学生t分布混合模型(Student′s t-distribution Mixture Model, TMM)的遥感图像分割新算法。该算法首先采用烟花算法(Fireworks Algorithm, FA)来求解K-Means聚类的初始聚类中心,提高了聚类效果,可获得遥感图像的初步分割结果。然后,以初步分割结果作为初始值,建立学生t分布混合模型(TMM),采用EM算法确定参数最终值,并借助Bayesian公式完成图像二次分割。最后进行了算例验证,验证结果显示新方法在分割精度和稳定性方面,都较现有算法表现更优,可更为有效地实现遥感河流影像的解译。

关键词: 遥感图像;K-Means;聚类原理;学生t分布混合模型;烟花算法;

Abstract: Using appropriate image processing techniques and data models is the key to accurately interprete satellite remotely sensed river images. Aiming at the current technical problems, this paper starts from improving the accuracy and noise resistance of remote sensing river image segmentation, and proposes a firework-based optimized K-Means clustering and student's t-distribution Mixture Model (TMM). The algorithm first uses the Fireworks Algorithm (FA) to solve the initial clustering center of K-Means clustering, which improves the clustering effect and can obtain the preliminary segmentation results of remote sensing images. By using the preliminary segmentation result as initial value, the TMM is established, the EM algorithm is used to determine the final value of the parameters, and the Bayesian formula is used to complete the secondary image segmentation. The validation results show that the proposed method is better than existing algorithms in terms of segmentation accuracy and stability, and can achieve the interpretation of remotely sensed river images more effectively.

Key words: remote sensing image; K-Means; cluster method; student’s t distribution mixed model; fireworks algorithm