人民长江

• 论文 • 上一篇    下一篇

基于EMD及BPNN的云南省昭通市径流量预测

范琳琳, 李亚龙, 乔伟, 熊玉江, 马莉莉   

  • 出版日期:2020-09-28 发布日期:2020-09-28

Runoff prediction of Zhaotong City at Yunnan Province based on EMD and BP Artificial Neural Network

FAN Linlin, LI Yalong ,QIAO Wei, XIONG Yujiang, MA Lili   

  • Online:2020-09-28 Published:2020-09-28

摘要: 为提高BP神经网络对径流量的预测精度,将经验模态分解(EMD)方法与BP神经网络相结合,采用云南省昭通市豆沙关水文站1959年1月至2015年12月的逐月径流量,共设置4种方案构建了径流量预测模型。其中,方案一采用前1个月的径流量预测下一个月的径流量;方案二采用前2个月的径流量预测下一个月的径流量;方案三采用前3个月的径流量预测下1个月的径流量;方案四首先利用EMD将原始径流序列分解为高频项、低频项、趋势项,然后采用前1个月的分解数据对这3类项下1个月的分解数据进行预测,最后叠加为预测的下1个月径流量。结果表明:方案四的R2为0.86,高于其他3个方案,说明将数据先通过EMD分解再分别预测径流量能够提高预测精度。研究成果可为未来构建径流量的预测模型和提高预测精度提供技术支撑。

关键词: 径流量预测, EMD, BP神经网络, 昭通地区, 云南省

Abstract: In order to improve the prediction accuracy of river runoff,the Empirical Mode Decomposition(EMD)method was used to build a runoff prediction model,combined with Back-Propagation Artificial Neural Network.The monthly runoff data from Doushaguan hydrological station in Zhaotong City,Yunnan Province from 1959 to 2015 was used,and four schemes were set to construct a runoff prediction model.In Scheme 1,the runoff of the first month was used to predict the runoff of the next month.In Scheme 2,the runoff of the first two months was used to predict the runoff of the next month.In Scheme 3,the runoff of the first three months was used to predict the runoff of the next month.In Scheme 4,the EMD was used to decompose the original runoff sequence into high frequency item,low frequency item and trend item,then the decomposition data of the previous month were used to predict the decomposition data of the three items in the next month,and finally superimposed as the predicted next month runoff.The results showed that the R2 of Scheme 4(EMD based model)was 0.86,which was the highest among all the four schemes.The research result can provide technical support for the construction of runoff prediction model and the improvement of prediction accuracy.

Key words: runoff prediction, EMD, BP Neural Network, Zhaotong City, Yunnan Province,