人民长江
• 论文 • 上一篇 下一篇
崔军玲,余波,廖翔,张术彬,刘东生
出版日期:
发布日期:
CUI Junling, YU Bo, LIAO Xiang, ZHANG Shubin, LIU Dongsheng
Online:
Published:
摘要: 以四川省安宁河谷地区的风电场为例,利用Meteodyn WT软件,对所选的风电场测风数据进行了分析研究。通过分析研究,得到了整个风电场各个网格点的风速、能量密度、湍流强度以及发电量等方面的参数;在此基础上,以风电场的发电量最大、尾流影响较小为优化目标,建立了基于改进的粒子群算法的优化数学模型,并运用该模型,对风力发电机组的机位优化布置方案进行了研究。研究结果表明:经过优化,与原有的风力发电机组的布置方案相比,优化后的布置方案的理论年发电量提升了5.58%。
关键词: 风力机位优化布置, 粒子群算法, 风电场, 河谷地形
Abstract: We use meteodyn WT to carry out analysis for the wind data of a wind farm in Anning river valley area, Sichuan, and the power generation parameters at every grid points are obtained, including wind velocity, energy density, turbulence intensity and power generation capacity. Based on the data, and by setting the optimal goal of largest power generation and lowest tail flow influence, we optimize the wind turbines layout by the improved Particle Swarm Algorithm. The results show that the optimized layout can increase 5.58% annual power generation compared with the original layout theoretically.
Key words: optimal layout of wind farm, Particle Swarm Algorithm, wind farm, river valley terrain
崔军玲,余波,廖翔,张术彬,刘东生. 基于粒子群优化算法的河谷地形风电场优化布置[J]. 人民长江, doi: 10.16232/j.cnki.1001-4179.2018.02.017.
CUI Junling, YU Bo, LIAO Xiang, ZHANG Shubin, LIU Dongsheng. Optimal layout of wind farm in river valley terrain based on Particle Swarm Algorithm[J]. , doi: 10.16232/j.cnki.1001-4179.2018.02.017.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.rmcjzz.com/CN/10.16232/j.cnki.1001-4179.2018.02.017
http://www.rmcjzz.com/CN/Y2018/V49/I2/84