摘要: 针对运用BP神经网络模型来编制水利定额存在收敛慢、精度低、稳定性差的缺陷,提出利用粒子群算法(PSO)来优化BP神经网络初始权值阈值的模型,优化模型结合了粒子群全局搜索能力和BP网络的局部探优能力。在运用MATLAB对算法模型进行编程中,首先确定模型的关键参数和开展数据的预处理,其次利用标准粒子群算法优化BP神经网络的初始连接权值阈值,最后将优化的连接值带入BP模型训练并预测,实验中连续运行了50次模型。结果表明: BP模型的双输出预测精度分别为11.13%和8.41%,有10次未达到目标精度;PSO-BP模型的双输出预测精度分别为5.65%和5.44%,全部达到目标精度。因而得出结论,PSO-BP模型比单纯BP神经网络的预测精度和稳定性更好,更适合用来指导水利定额的编制工作。